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Fast multidimensional NMR: radial sampling of evolution space
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Abstract

Multidimensional NMR spectroscopy can be speeded up by limited radial sampling of the time-domain evolution data. The
resulting frequency-domain projections are used to reconstruct the full NMR spectrum. New algorithms are proposed to suppress
back-projection artifacts while retaining optimum sensitivity. The method is illustrated by experiments on the 900 MHz HNCO
spectrum of a protein, HasA.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Increases in magnetic field strength and dimensional-
ity of NMR experiments have provided powerful new
tools for investigating proteins [1,2]. Unfortunately this
comes at the cost of dramatically prolonged measure-
ment times. Recent attempts to tackle this problem by
using highly truncated data sets [3,4] or nonlinear sam-
pling [5,6] are based on predicting the missing data
points by fitting the time-domain data to an assumed
model signal. This is usually an effort- and time-consum-
ing procedure because nothing is known about the mul-
tidimensional spectrum a priori, so it has to be guessed.
The Fourier transform of such incompletely sampled
data is either seriously corrupted or provides too little
information for conventional analysis.

Recently, we have proposed a different strategy—ra-
dial sampling of the time-domain data in evolution
space by linking the indirect time variables together in
suitable proportions. Although this is another example
of sparse data sampling, in this case the Fourier trans-
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form provides an excellent starting point for deriving
the multidimensional spectrum. If the time-domain data
set is sampled by a section inclined at an angle a, the
Fourier transform is a projection onto a plane inclined
at the same angle a in the frequency domain [7,8]. This
method generates a set of plane projections that can
be used to reconstruct the full spectrum [9,10]. The con-
cept is analogous to established schemes employed in
X-ray tomography [11] and magnetic resonance imaging
[12]. The resulting speed advantage depends on the com-
plexity of the spectrum and can be as high as an order of
magnitude for each new frequency dimension beyond
two, opening the door to an exciting range of higher-di-
mensional measurements or the investigation of time-
sensitive phenomena.

The projection–reconstruction method enjoys the
same sensitivity advantage per unit time as classical mul-
tidimensional spectroscopy because all the time-domain
signals contribute to the final spectrum. Hence it works
in situations of marginal sensitivity where other ‘‘re-
duced dimensionality’’ approaches can experience
difficulties. However, it is important to choose recon-
struction schemes that preserve this signal-to-noise
advantage. This is not the case for the ‘‘lower-value
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algorithm’’ (outlined below) which was conceived for
samples of good intrinsic sensitivity. It is also important
to avoid the introduction of artifacts into the recon-
structed spectrum, as often happens with back-projec-
tion schemes based on the inverse Radon transform,
particularly if only a few projections are used [13,14].

1.1. Reconstruction algorithms

Consider, for the sake of illustration, a three-dimen-
sional experiment, although the procedure is readily ex-
tended to higher dimensions. The data array F1F2F3 is
built up one F1F2 plane at a time. There are several pos-
sible modes of attack. A method that has already been
employed [9,10] starts with the measured one-dimen-
sional projections on the F1 and F2 axes. Cross-peak
in the F1F2 plane are predicted by scaling the F1 traces
according to the intensities in the F2 trace (or vice versa).
This generates a ‘‘provisional’’ spectrum where the fre-
quencies are correct but the intensities are under-deter-
mined. The latter are corrected by using information
from tilted projections, achieved very effectively by
employing the ‘‘lower-value’’ algorithm [15,16]. Unfor-
tunately these additional projections do nothing to im-
prove the signal-to-noise ratio, although the noise is
slightly reduced in empty regions of the spectrum where
there is no advantage to be gained. This is clearly an
inefficient use of spectrometer time; it would be prefera-
ble if all the measurements contributed to the overall
sensitivity.

The preferred scheme invokes a method related to the
inverse Radon transform [13,14]. Projections are re-
corded at a small number of different values of a. Each
one is extended at right angles to form a set of parallel
ridges running across the F1F2 plane at an angle
(90� �a). These ‘‘back-projections’’ are summed so that
intensity builds up linearly at locations where they rein-
force, generating genuine cross-peaks with essentially
optimum signal-to-noise ratio. However, the method in-
volves two kinds of artifacts—weak residual ridges that
criss-cross the F1F2 plane and false peaks where some
(but not all) of the relevant ridges intersect. The larger
the number N of independent projections, the weaker
the artifacts in comparison with genuine cross-peaks,
but unfortunately the experimental duration increases
with N. The present communication suggests two proce-
dures for suppressing such artifacts so that a clean mul-
tidimensional spectrum can be constructed from the
smallest number of projections.

1.2. Iterative extraction of cross-peaks

This scheme is loosely related to a method employed
in radioastronomy [17,18] and later adapted for NMR
spectroscopy to generate pure-phase spectra, eliminate
truncation artifacts [19], or enhance resolution [20]. In
radioastronomy interferometry, a regularly spaced
two-dimensional array of detectors is employed. In prac-
tice this equipment can generate undesirable side-lobe
patterns due to malfunctioning elements or occultation
by the moon, together with artifacts known as grating
responses due to coarse coverage. The data-processing
scheme introduced by Högbom [18] cleans up the exper-
imental star map by progressively subtracting the inten-
sity of the strongest response (along with its associated
artifacts) until all ‘‘dirty’’ responses significantly above
the noise floor have been removed. Since the form of
the sidelobes and grating responses are known, the cor-
responding ‘‘clean’’ signals can then be reassembled to
give the desired star map.

The algorithm for suppressing artifacts in a recon-
structed NMR spectrum possesses some similar features,
because each genuine cross-peak carries with it a known
pattern of undesirable ridges. It can be confidently as-
sumed that the tallest response in the F1F2 plane is a va-
lid cross-peak rather than an artifact. A search program
locates this strongest peak and subtracts its associated
peaks from all the projections. The cross-peak parame-
ters are stored, and are eventually used for the construc-
tion of the final spectrum. A new version of the F1F2

spectrum is then constructed from the depleted projec-
tions; it no longer contains the web of ridges from the
tallest cross-peak; in the process some false peaks are
also suppressed. The cycle is repeated, and once all the
peaks significantly above the noise floor have been re-
moved from the projections, the offending ridges and
false cross-peaks disappear, leaving a noisy baseplane
containing some very weak signals and artifacts—the
‘‘residual spectrum.’’ The genuine cross-peaks are now
reintroduced into this residual spectrum, stripped of
their webs of ridges. Note that no significant experimen-
tal information is destroyed in this procedure; very weak
responses comparable with the noise are all retained but
they are unlikely to be accompanied by any noticeable
ridges or false peaks.

1.3. Algebraic algorithm

Each NMR response in one of the projections defines
a line [10] running across the F1F2 plane at an angle
(90� �a). A genuine cross-peak occurs when lines from
every projection (one from each) all intersect at the same
point in this plane. When experimental errors are taken
into account, to ‘‘intersect’’ means to fall within a small
area defined by the experimental errors in the frequen-
cies. In contrast, false cross-peaks always involve fewer
intersections, sometimes only two. Consequently, the
solutions of the corresponding sets of linear equations
define the locations of the true cross-peaks.

Suppose there are k projections at various inclina-
tions a1 through ak. Each projection is broken down into
a set of n individual responses by a line-fitting procedure



Communication / Journal of Magnetic Resonance 173 (2005) 317–321 319
that yields the frequency Fn, its intensity In, and full line-
width Dn. This search is terminated just before the noise
threshold is reached. The correlation stage operates with
the frequencies Fn together with an estimate for the dig-
itization errors for that particular projection. Starting
with a frequency from the first chosen projection and
the known value of (90� �a) an equation is written for
the first skew diagonal. Similar equations are written
for one frequency selected from each of the remaining
projections. These k simultaneous equations are exam-
ined in pairs to establish the intersection points. If all
the intersections coincide within the acceptable fre-
quency errors, this defines the location of a genuine
cross-peak. (Other identifying criteria include the inten-
sities and linewidths, and the associated F3 frequencies.)
These frequencies are then disregarded while the itera-
tion examines the remaining simultaneous equations,
continuing until all pairwise combinations have been
tested. As in the previous algorithm, the genuine cross-
peaks are then reintroduced into the residual spectrum.

The iterative extraction algorithm has been applied to
the projection–reconstruction of the 900 MHz constant-
time HNCO spectrum of a 1.7 mM aqueous solution
Fig. 1. C–N correlations in one plane of the three-dimensional HNCO spec
contour plots. (A) Initially the ridges and false peaks complicate the display.
projections. (C) After peaks from two cross-peaks were removed. (D) After pe
then reintroduced into the residual spectrum.
(10% D2O) of the isotopically enriched 187-residue pro-
tein HasA. The orthogonal NH and CH planes used 128
complex data points, and required 20 min of data acqui-
sition each. To obtain better sensitivity and lineshape,
the NH plane was actually borrowed from a two-dimen-
sional HSQC experiment. Projections of the three-di-
mensional HNCO spectrum were recorded for
a = ± 60�, using 100 complex data points, requiring
30 min. For the purposes of illustration a typical
F1F2 plane corresponding to a proton frequency of
9.184 ppm is shown as a contour plot in Fig. 1 and as
a stacked-trace plot in Fig. 2. Initially, since only four
projections were used, the spectrum is dominated by
prominent ridges and false peaks. The search program
locates the three tallest cross-peaks in the F1F2 plane
and stores their parameters in a separate location. The
corresponding responses are subtracted (one at a time)
from the F1 and F2 projections, progressively simplifying
the new back-projections. The final back-projection of
the depleted F1 and F2 traces creates a residual spec-
trum, a virtually ‘‘blank canvas’’ onto which the genuine
cross-peaks are reintroduced. This display (Figs. 1D and
2D) comprises three clearly defined C–N correlation
trum of the HasA protein, obtained by back-projection and shown as
(B) After peaks from one cross-peak were removed from the F1 and F2

aks from three cross-peaks were removed; the genuine cross-peaks were



Fig. 2. As Fig. 1, but displayed as stacked traces, emphasizing the relative intensities.
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peaks. The very weak tail of a signal from a nearby
plane serves to emphasize the high sensitivity.

The goal of the additive algorithm is to improve the
signal-to-noise ratio of the reconstructed spectra in com-
parison with the earlier ‘‘lower-value’’ algorithm.
Although the latter is very effective in eliminating arti-
facts, the signal-to-noise ratio is determined, once and
for all, when the two orthogonal projections have been
processed; it does not improve as additional projections
are included. By contrast, the additive algorithm treats
all N projections even-handedly, and boosts the signal-
to-noise ratio as the square root of N, as in conventional
multiscan averaging. The disadvantage of back-projec-
tion is the presence of artifacts, but the proposed itera-
tive extraction scheme reduces these by a very large
factor. Fig. 2, recorded for the worst-possible case of
only four projection angles, demonstrates a 40-fold sup-
pression of the most prominent artifact.

There are those who would argue that the numerical
results of this operation (frequencies, intensities, and
correlations) are all that is needed for sequencing the
aminoacid residues of a protein, particularly when an
automated program is used. We believe this to be a
short-sighted view. Reconstruction of the actual multidi-
mensional spectrum is important. It is the best way to
assess the reliability of the experimental data, and it
translates any errors in the reconstruction algorithm
into artifacts, such as webs of ridges that would nor-
mally have been eliminated. The spectrum also brings
to light weak peaks that may be overlooked by a purely
numerical analysis. It would be a great mistake to belit-
tle the importance of real spectra.
Acknowledgments

The authors are indebted to Dr. Anne Lecroisey
and Dr. Muriel Delepierre of the Institute Pasteur
for the protein sample HasA, to Professor Yoshifumi
Nishimura of Yokohama City University for permis-
sion to use the 900 MHz spectrometer, and to Dr.
Junichi Kurita of Varian for help in setting up the
experiments.
References

[1] M. Saltzmann, K. Pervushin, G. Wider, H. Senn, K. Wüthrich,
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